Download driver m-58 party sound

Download driver m-58 party sound

download driver m-58 party sound

How Do I Know Which HP Software or Driver Download to Select? This video describes two ways to help you find and install the correct software and drivers for. Downloads. Driver OS:. Windows XP 64bit, Windows XP 32bit, Windows Vista 64bit, Windows Vista 32bit, Windows Server 2003 64bit, Windows Server 2003. The driver must be installed prior to connecting the device, in order to have a successful enumeration. Key Features. Digitally signed driver; WinUSB CoInstallers. download driver m-58 party sound

Consider, that: Download driver m-58 party sound

Download driver m-58 party sound
Download driver m-58 party sound
Download driver m-58 party sound
Download driver m-58 party sound
Download driver m-58 party sound


Loudspeaker designed to reproduce low-pitched audio frequencies
12-inch (30 cm) subwoofer driver (loudspeaker). A driver is commonly installed in an enclosure (often a wooden cabinet) to prevent the sound waves coming off the back of the driver diaphragm from canceling out the sound waves being generated from the front of the subwoofer.

A subwoofer (or sub) is a loudspeaker designed to reproduce low-pitched audio frequencies known as bass and sub-bass, lower in frequency than those which can be (optimally) generated by a woofer. The typical frequency range for a subwoofer is about 20–200 Hz for consumer products,[1] below 100 Hz for professional live sound,[2] and below 80 Hz in THX-certified systems.[3] Subwoofers are never used alone, as they are intended to augment the low-frequency range of loudspeakers that cover the higher frequency bands. While the term "subwoofer" technically only refers to the speaker driver, in common parlance, the term often refers to a subwoofer driver mounted in a speaker enclosure (cabinet), often with a built-in amplifier.

Subwoofers are made up of one or more woofers mounted in a loudspeaker enclosure—often made of wood—capable of withstanding air pressure while resisting deformation. Subwoofer enclosures come in a variety of designs, including bass reflex (with a port or vent), using a subwoofer and one or more passive radiator speakers in the enclosure, acoustic suspension (sealed enclosure), infinite baffle, horn-loaded, tapped horn, transmission line, bandpass or isobaric designs, representing unique trade-offs with respect to efficiency, low-frequency range, cabinet size and cost. Passive subwoofers have a subwoofer driver and enclosure and they are powered by an external amplifier. Active subwoofers include a built-in amplifier.[4]

The first home audio subwoofers were developed in the 1960s to add bass response to home stereo systems. Subwoofers came into greater popular consciousness in the 1970s with the introduction of Sensurround in movies such as Earthquake, which produced loud low-frequency sounds through large subwoofers. With the advent of the compact cassette and the compact disc in the 1980s, the easy reproduction of deep and loud bass was no longer limited by the ability of a phonograph record stylus to track a groove,[5] and producers could add more low-frequency content to recordings. As well, during the 1990s, DVDs were increasingly recorded with "surround sound" processes that included a low-frequency effects (LFE) channel, which could be heard using the subwoofer in home theater systems. During the 1990s, subwoofers also became increasingly popular in home stereo systems, custom car audio installations, and in PA systems. By the 2000s, subwoofers became almost universal in sound reinforcement systems in nightclubs and concert venues.


View of the underside of the downward-firing Infinity Servo Statik 1, showing the size of the 18-inch (45 cm) custom-wound Cerwin Vega driver in relation to a can of Diet Coke, to show scale.

1920s to 1950s precursors[edit]

From about 1900 to the 1950s, the "lowest frequency in practical use" in recordings, broadcasting and music playback was 100 Hz.[6] When sound was developed for motion pictures, the basic RCA sound system was a single 8" speaker mounted in straight horn, an approach which was deemed unsatisfactory by Hollywood decisionmakers, who hired Western Electric engineers to develop a better speaker system.[7] The early Western Electric experiments added a set of 18" drivers for the low end in a large, open-backed baffle (extending the range down to 50 Hz) and a high-frequency unit, but MGM was not pleased with the sound of the three-way system, as they had concerns about the delay between the different drivers.[7]

In 1933, the head of MGM's sound department, Douglas Shearer, worked with John Hilliard and James B. Lansing (who would later found Altec Lansing in 1941 and JBL in 1946) to develop a new speaker system that used a two-way enclosure with a W-shaped bass horn that could go as low as 40 Hz.[7] The Shearing-Lansing 500-A ended up being used in "screening rooms, dubbing theaters, and early sound reinforcement".[7] In the late 1930s, Lansing created a smaller two-way speaker with a 15" woofer in a vented enclosure, which he called the Iconic system; it was used as a studio monitor and in high-end home hi-fi set-ups.[7]

During the 1940s swing era, to get deeper bass, "pipelike opening[s]" were cut into speaker enclosures, creating bass reflex enclosures, as it was found that even a fairly inexpensive speaker enclosure, once modified in this way, could "transmit the driving power of a heavy...drumbeat—and sometimes not much else—to a crowded dancefloor."[6] Prior to the development of the first subwoofers, woofers were used to reproduce bass frequencies, usually with a crossover point set at 500 Hz and a 15" loudspeaker in an infinite baffle or in professional sound applications, a "hybrid horn-loaded" bass reflex enclosure (such as the 15" Altec Lansing A-7 enclosure nicknamed the "Voice of the Theater", which was introduced in 1946).[8] In the mid-1950s, the Academy of Motion Picture Arts and Sciences selected the "big, boxy" Altec A-7 as the industry standard for movie sound reproduction in theaters.[9]

1960s: first subwoofers[edit]

In September 1964, Raymon Dones, of El Cerrito, California, received the first patent for a subwoofer specifically designed to augment omnidirectionally the low frequency range of modern stereo systems (US patent 3150739). Able to reproduce distortion-free low frequencies down to 15 cycles per second (15 Hz), a specific objective of Dones's invention was to provide portable sound enclosures capable of high fidelity reproduction of low frequency sound waves without giving an audible indication of the direction from which they emanated. Dones's loudspeaker was marketed in the US under the trade name "The Octavium"[10] from the early 1960s to the mid-1970s. The Octavium was utilized by several recording artists of that era, most notably the Grateful Dead, bassist Monk Montgomery, bassist Nathan East, and the Pointer Sisters. The Octavium speaker and Dones's subwoofer technology were also utilized, in a few select theaters, to reproduce low pitch frequencies for the 1974 blockbuster movie Earthquake. During the late 1960s, Dones's Octavium was favorably reviewed by audiophile publications including Hi-Fi News and Audio Magazine.

Another early subwoofer enclosure made for home and studio use was the separate bass speaker for the Servo Statik 1 by New Technology Enterprises.[11] Designed as a prototype in 1966 by physicist Arnold Nudell and airline pilot Cary Christie in Nudell's garage, it used a second winding around a custom Cerwin Vega 18-inch (45 cm) driver to provide servo control information to the amplifier, and it was offered for sale at $1795, some 40% more expensive than any other complete loudspeaker listed at Stereo Review.[11] In 1968, the two found outside investors and reorganized as Infinity.[11] The subwoofer was reviewed positively in Stereophile magazine's winter 1968 issue as the SS-1 by Infinity. The SS-1 received very good reviews in 1970 from High Fidelity magazine.[11]

A display of Cerwin-Vega speaker enclosures at the 1975 Audio Engineering Society meeting.

Another of the early subwoofers was developed during the late 1960s by Ken Kreisel, the former president of the Miller & Kreisel Sound Corporation in Los Angeles. When Kreisel's business partner, Jonas Miller, who owned a high-end audio store in Los Angeles, told Kreisel that some purchasers of the store's high-end electrostatic speakers had complained about a lack of bass response in the electrostatics, Kreisel designed a powered woofer that would reproduce only those frequencies that were too low for the electrostatic speakers to convey.[12] Infinity's full range electrostatic speaker system that was developed during the 1960s also used a woofer to cover the lower frequency range that its electrostatic arrays did not handle adequately.

1970s to 1980s[edit]

The first use of a subwoofer in a recording session was in 1973 for mixing the Steely Dan album Pretzel Logic, when recording engineerRoger Nichols arranged for Kreisel to bring a prototype of his subwoofer to Village Recorders.[13] Further design modifications were made by Kreisel over the next ten years, and in the 1970s and 1980s by engineer John P. D'Arcy; record producerDaniel Levitin served as a consultant and "golden ears" for the design of the crossover network (used to partition the frequency spectrum so that the subwoofer would not attempt to reproduce frequencies too high for its effective range, and so that the main speakers would not need to handle frequencies too low for their effective range). In 1976, Kreisel created the first satellite speakers and subwoofer system, named "David and Goliath".[14]

Subwoofers received a great deal of publicity in 1974 with the movie Earthquake, which was released in Sensurround. Initially installed in 17 U.S. theaters, the Cerwin Vega "Sensurround" system used large subwoofers that were driven by racks of 500 watt amplifiers, triggered by control tones printed on one of the audio tracks on the film. Four of the subwoofers were positioned in front of the audience under (or behind) the film screen and two more were placed together at the rear of the audience on a platform. Powerful noise energy and loud rumbling in the range of 17 Hz to 120 Hz were generated at the level of 110–120 decibels of sound pressure level, abbreviated dB(SPL). The new low frequency entertainment method helped the film become a box office success. More Sensurround systems were assembled and installed. By 1976, there were almost 300 Sensurround systems leapfrogging through select theaters. Other films to use the effect include the WW II naval battle epic Midway in 1976 and Rollercoaster in 1977.[15]

For owners of 33 rpm LPs and 45 rpm singles, loud and deep bass was limited by the ability of the phonograph record stylus to track the groove.[5] While some hi-fi aficionados had solved the problem by using other playback sources, such as reel-to-reel tape players which were capable of delivering accurate, naturally deep bass from acoustic sources, or synthetic bass not found in nature, with the popular introduction of the compact cassette in the late 1960s it became possible to add more low frequency content to recordings.[16] By the mid-1970s, 12" vinyl singles, which allowed for "more bass volume", were used to record disco, reggae, dub and hip-hop tracks; dance club DJs played these records in clubs with subwoofers to achieve "physical and emotional" reactions from dancers.[17]

In the early 1970s, David Mancuso hired sound engineer Alex Rosner[18] to design additional subwoofers for his disco dance events, along with "tweeter arrays" to "boost the treble and bass at opportune moments" at his private, underground parties at The Loft.[19] The demand for sub-bass sound reinforcement in the 1970s was driven by the important role of "powerful bass drum" in disco, as compared with rock and pop; to provide this deeper range, a third crossover point from 40 Hz to 120 Hz (centering on 80 Hz) was added.[8] The Paradise Garagediscotheque in New York City, which operated from 1977 to 1987, had "custom designed 'sub-bass' speakers" developed by Alex Rosner's disciple, sound engineer Richard ("Dick") Long [18] that were called "Levan Horns" (in honor of resident DJLarry Levan).[17]

By the end of the 1970s, subwoofers were used in dance venue sound systems to enable the playing of "[b]ass-heavy dance music" that we "do not 'hear' with our ears but with our entire body".[19] At the club, Long used four Levan bass horns, one in each corner of the dancefloor, to create a "haptic and tactile quality" in the sub-bass that you could feel in your body.[20] To overcome the lack of sub-bass frequencies on 1970s disco records (sub-bass frequencies below 60 Hz were removed during mastering), Long added a DBX 100 "Boom Box" subharmonic pitch generator into his system to synthesize 25 Hz to 50 Hz sub-bass from the 50 to 100 Hz bass on the records.[20]

By the later 1970s, disco club sound engineers were using the same large Cerwin Vega Sensurround-style folded horn subwoofers that were used in Earthquake and similar movies in dance club system installations.[8] In the early 1980s, Long designed a sound system for the Warehouse dance club, with "huge stacks of subwoofers" which created "deep and intense" bass frequencies that "pound[ed] through your system" and "entire body", enabling clubgoers to "viscerally experience" the DJs' house music mixes.[21]

A crew sets up a sound system, including large bass bins, in Jamaica in 2009.

In Jamaica in the 1970s and 1980s, sound engineers for reggaesound systems began creating "heavily customized" subwoofer enclosures by adding foam and tuning the cabinets to achieve "rich and articulate speaker output below 100 Hz".[22] The sound engineers who developed the "bass-heavy signature sound" of sound reinforcement systems have been called "deserving as much credit for the sound of Jamaican music as their better-known music producer cousins".[23] The sound engineers for Stone Love Movement (a sound system crew), for example, modified folded horn subwoofers they imported from the US to get more of a bass reflex sound that suited local tone preferences for dancehall audiences, as the unmodified folded horn was found to be "too aggressive" sounding and "not deep enough for Jamaican listeners".[22]

In sound system culture, there are both "low and high bass bins" in "towering piles" that are "delivered in large trucks" and set up by a crew of "box boys", and then positioned and adjusted by the sound engineer in a process known as "stringing up", all to create the "sound of reggae music you can literally feel as it comes off these big speakers".[24] Sound system crews hold 'sound clash' competitions, where each sound system is set up and then the two crews try to outdo each other,[25] both in terms of loudness and the "bass it produced".[26]

The 1987 Bose Acoustimass 5 stereo bass driver contained one six-inch (152 mm) driver per channel and provided crossover filtering for its two cube speaker arrays.[27]

In the 1980s, the Bose Acoustimass AM-5 became a popular subwoofer and small high-range satellite speaker system for home listening.[28] Steve Feinstein stated that with the AM-5, the system's "appearance mattered as much as, if not more than, great sound" to consumers of this era, as it was considered to be a "cool" look.[28] The success of the AM-5 led to other makers launching subwoofer-satellite speaker systems, including Boston Acoustics Sub Sat 6 and 7, and the Cambridge SoundWorks Ensemble systems (by Kloss).[28] Claims that these sub-satellite systems showed manufacturers and designers that home theater systems with a hidden subwoofer could be "feasible and workable in a normal living room" for mainstream consumers. Despite criticism of the AM-5 from audio experts, regarding a lack of bass range below 60 Hz, an "acoustic hole" in the 120 to 200 Hz range and a lack of upper range above 13 kHz for the satellites, the AM-5 system represented 30% of the US speaker market in the early 1990s.[28]

In the 1980s, Origin Acoustics developed the first residential in-wall subwoofer named Composer. It used an aluminum 10" driver and a foam-lined enclosure designed to be mounted directly into wall studs during the construction of a new home.[29] The frequency response for the Composer is 30 Hz to 250 Hz.[30]

1990s to 2010s[edit]

While in the 1960s and 1970s deep bass speakers were once an exotic commodity owned by audiophiles, by the mid-1990s they were much more popular and widely used, with different sizes and capabilities of sound output.[31] An example of 1990s subwoofer use in sound reinforcement is the Ministry of Sound dance club which opened in 1991 in London. The dancefloor's sound system was based on Richard Long's design at Paradise Garage. The club spent about £500,000 on a sound system that used Martin Audio components in custom-built cabinets, including twelve 21" 9,500 watt active subwoofers, twelve 18" subwoofers and twelve Martin Audio W8C mid-high speakers.[32]

The popularity of the CD made it possible to add more low frequency content to recordings and satisfy a larger number of consumers.[16] Home subwoofers grew in popularity, as they were easy to add to existing multimedia speaker setups and they were easy to position or hide.[33] In 2018, some electronic dance music (EDM) sound systems for venues that play hardcore bass have multiple subwoofer arrays to deal with mid-bass (80–150 Hz), bass (40–80 Hz), and "infra-bass" (20–40 Hz).[34]

In 2015, Damon Krukowski wrote an article entitled "Drop the Bass: A Case Against Subwoofers" for Pitchfork magazine, based on his performing experience with Galaxie 500; he argues that "for certain styles of music", especially acoustic music genres, "these low-end behemoths are actually ruining our listening experience" by reducing the clarity of the low end.[35] In 2015, John Hunter from REL Acoustics stated that audiophiles tend to "have a love/hate relationship with subwoofers" because most subs have "awful", "entry-level" sound quality and they are used in an "inappropriate way", without integrating the bass seamlessly.[36]

Construction and features[edit]

Loudspeaker and enclosure design[edit]

Cross-section of a subwoofer drive unit.

Subwoofers use speaker drivers (woofers) typically between 8-inch (20 cm) and 21-inch (53 cm) in diameter. Some uncommon subwoofers use larger drivers, and single prototype subwoofers as large as 60-inch (152 cm) have been fabricated.[37] On the smaller end of the spectrum, subwoofer drivers as small as 4-inch (10 cm) may be used. Small subwoofer drivers in the 4-inch range are typically used in small computer speaker systems and compact home theatre subwoofer cabinets. The size of the driver and number of drivers in a cabinet depends on the design of the loudspeaker enclosure, the size of the cabinet, the desired sound pressure level, the lowest frequency targeted and the level of permitted distortion. The most common subwoofer driver sizes used for sound reinforcement in nightclubs, raves and pop/rock concerts are 10-, 12-, 15- and 18-inch models (25 cm, 30 cm, 38 cm, and 45 cm respectively). The largest available sound reinforcement subwoofers, 21-inch (53 cm) drivers, are less commonly seen.

The efficiency of a speaker driver is given by:

where the variables are Thiele/Small parameters. Deep low-frequency extension is a common goal for a subwoofer and small box volumes are also considered desirable, to save space and reduce the size for ease of transportation (in the case of sound reinforcement and DJ subwoofers). Hofmann's "Iron Law" therefore mandates low efficiency under those constraints, and indeed most subwoofers require considerable power, much more than other individual drivers.

So for the example of a sealed speaker box, the box volume to achieve a given Qts is proportional to Vas:


Therefore, a decrease in box volume (i.e., a smaller speaker cabinet ) and the same F3 will decrease the efficiency of the subwoofer. Similarly the F3 of a speaker is proportional to Fs:

As the efficiency is proportional to Fs3, small improvements in low-frequency extension with the same driver and box volume will result in very significant reductions in efficiency. For these reasons, subwoofers are typically very inefficient at converting electrical energy into sound energy. This combination of factors accounts for the higher amplifier power required to drive subwoofers, and the requirement for greater power handling for subwoofer drivers. Enclosure variations (e.g., bass reflex designs with a port in the cabinet) are often used for subwoofers to increase the efficiency of the driver/enclosure system, helping to reduce the amplifier power requirements.

Heavily braced and built subwoofer enclosure.

Subwoofers are typically constructed by mounting one or more woofers in a cabinet of medium-density fibreboard (MDF), oriented strand board (OSB), plywood, fiberglass, aluminum or other stiff materials. Because of the high air pressure they produce in the cabinet, subwoofer enclosures often require internal bracing to distribute the resulting forces.

Subwoofers have been designed using a number of enclosure approaches: bass reflex (with a port or vent), using a subwoofer and one or more passive radiator speakers in the enclosure, acoustic suspension (sealed enclosure), infinite baffle, horn-loaded, tapped horn, transmission line and bandpass. Each enclosure type has advantages and disadvantages in terms of efficiency increase, bass extension, cabinet size, distortion, and cost.

Multiple enclosure types may even be combined in a single design, such as in computer audio with the subwoofer design of the Labtec LCS-2424 (later acquired by Logitech and used for their Z340/Z540/Z640/Z3/Z4), which is a (primitive) passive radiator bandpass enclosure with a bass reflex dividing chamber.

While not necessarily an enclosure type, isobaric (such as push-pull) coupled loading of two drivers has sometimes been used in subwoofer products of computer,[38] home cinema[39] and sound reinforcement[40] class, and also DIY versions in automotive applications, to provide relatively deep bass for their size. Self-contained "isobaric-like" driver assemblies have been manufactured since the 2010s.[41][42][43]

The smallest subwoofers are typically those designed for desktop multimedia systems. The largest common subwoofer enclosures are those used for concert sound reinforcement systems or dance club sound systems. An example of a large concert subwoofer enclosure is the 1980s-era Electro-Voice MT-4 "Bass Cube" system, which used four 18-inch (45 cm) drivers. An example of a subwoofer that uses a bass horn is the Bassmaxx B-Two, which loads an 18-inch (45 cm) driver onto an 11-foot (3.4 m) long folded horn. Folded horn-type subwoofers can typically produce a deeper range with greater efficiency than the same driver in an enclosure that lacks a horn. However, folded horn cabinets are typically larger and heavier than front-firing enclosures, so folded horns are less commonly used. Some experimental fixed-installation subwoofer horns have been constructed using brick and concrete to produce a very long horn that allows a very deep sub-bass extension.[44]

Subwoofer output level can be increased by increasing cone surface area or by increasing cone excursion. Since large drivers require undesirably large cabinets, most subwoofer drivers have large excursions. Unfortunately, high excursion, at high power levels, tends to produce more distortion from inherent mechanical and magnetic effects in electro-dynamic drivers (the most common sort). The conflict between assorted goals can never be fully resolved; subwoofer designs necessarily involve tradeoffs and compromises. Hofmann's Iron Law (the efficiency of a woofer system is directly proportional to its cabinet volume (as in size) and to the cube of its cutoff frequency, that is how low in pitch it will go) applies to subwoofers just as it does to all loudspeakers.[45] Thus a subwoofer enclosure designer aiming at the deepest-pitched bass will probably have to consider using a large enclosure size; a subwoofer enclosure designer instructed to create the smallest possible cabinet (to make transportation easier) will need to compromise how low in pitch their cabinet will go.

Frequency range and frequency response[edit]

A large subwoofer cabinet used in a home hi-fi system.

The frequency response specification of a speaker describes the range of frequencies or musical tones a speaker can reproduce, measured in hertz (Hz).[46] The typical frequency range for a subwoofer is between 20–200 Hz.[1] Professional concert sound system subwoofers typically operate below 100 Hz,[2] and THX-certified systems operate below 80 Hz.[3] Subwoofers vary in terms of the range of pitches that they can reproduce, depending on a number of factors such as the size of the cabinet and the construction and design of the enclosure and driver(s). Specifications of frequency response depend wholly for relevance on an accompanying amplitude value—measurements taken with a wider amplitude tolerance will give any loudspeaker a wider frequency response. For example, the JBL 4688 TCB Subwoofer System, a now-discontinued system which was designed for movie theaters, had a frequency response of 23–350 Hz when measured within a 10-decibel boundary (0 dB to −10 dB) and a narrower frequency response of 28–120 Hz when measured within a 6-decibel boundary (±3 dB).[47]

Subwoofers also vary in regard to the sound pressure levels achievable and the distortion levels that they produce over their range. Some subwoofers, such as "The Abyss" by MartinLogan for example, can reproduce pitches down to around 18 Hz (which is about the pitch of the lowest rumbling notes on a huge pipe organ with 32-foot (9.8 m)-16 Hz-bass pipes) to 120 Hz (±3 dB). Nevertheless, even though the Abyss subwoofer can go down to 18 Hz, its lowest frequency and maximum SPL with a limit of 10% distortion is 35.5 Hz and 79.8 dB at 2 meters.[48] This means that a person choosing a subwoofer needs to consider more than just the lowest pitch that the subwoofer can reproduce.


This picture of the internal components of an active (powered) subwoofer shows the circuitry for the power amplifier.

'Active subwoofers' include their own dedicated amplifiers within the cabinet. Some also include user-adjustable equalization that allows boosted or reduced output at particular frequencies; these vary from a simple "boost" switch, to fully parametric equalizers meant for detailed speaker and room correction. Some such systems are even supplied with a calibrated microphone to measure the subwoofer's in-room response, so the automatic equalizer can correct the combination of subwoofer, subwoofer location, and room response to minimize the effects of room modes and improve low-frequency performance.

'Passive subwoofers' have a subwoofer driver and enclosure, but they do not include an amplifier. They sometimes incorporate internal passive crossovers, with the filter frequency determined at the factory. These are generally used with third-party power amplifiers, taking their inputs from active crossovers earlier in the signal chain. Inexpensive Home Theatre in a Box packages often come with a passive subwoofer cabinet that is amplified by the multi-channel amplifier. While few high-end home-theater systems use passive subwoofers, this format is still popular in the professional sound industry.[49]


This picture of the rear panel of a Polk subwoofer cabinet shows a low-pass filter adjustment knob.

Equalization can be used to adjust the in-room response of a subwoofer system.[50] Designers of active subwoofers sometimes include a degree of corrective equalization to compensate for known performance issues (e.g., a steeper than desired low end roll-off rate). In addition, many amplifiers include an adjustable low-pass filter, which prevents undesired higher frequencies from reaching the subwoofer driver. For example, if a listener's main speakers are usable down to 80 Hz, then the subwoofer filter can be set so the subwoofer only works below 80 Hz.[3] Typical filters involve some overlap in frequency ranges; a steep 4th-order 24 dB/octave low-pass filter is generally desired for subwoofers in order to minimize the overlap region. The filter section may also include a high-pass "infrasonic" or "subsonic" filter, which prevents the subwoofer driver from attempting to reproduce frequencies below its safe capabilities. Setting an infrasonic filter is important on bass reflex subwoofer cabinets, as the bass reflex design tends to create the risk of cone overexcursion at pitches below those of the port tuning, which can cause distortion and damage the subwoofer driver. For example, in a ported subwoofer enclosure tuned to 30 Hz, one may wish to filter out pitches below the tuning frequency; that is, frequencies below 30 Hz.

Some systems use parametric equalization in an attempt to correct for room frequency response irregularities.[51] Equalization is often unable to achieve flat frequency response at all listening locations, in part because of the resonance (i.e., standing wave) patterns at low frequencies in nearly all rooms. Careful positioning of the subwoofer within the room can also help flatten the frequency response.[52] Multiple subwoofers can manage a flatter general response since they can often be arranged to excite room modes more evenly than a single subwoofer, allowing equalization to be more effective.[53]

Phase control[edit]

The rear panel of a down-firing, active subwoofer cabinet.

Changing the relative phase of the subwoofer with respect to the woofers in other speakers may or may not help to minimize unwanted destructive acoustic interference in the frequency region covered by both the subwoofer and the main speakers. It may not help at all frequencies, and may create further problems with frequency response, but even so is generally provided as an adjustment for subwoofer amplifiers.[54] Phase control circuits may be a simple polarity reversal switch or a more complex continuously variable circuit.

Continuously variable phase control circuits are common in subwoofer amplifiers, and may be found in crossovers and as do-it-yourself electronics projects.[55][56][57][58][59] Phase controls allow the listener to change the arrival time of the subwoofer sound waves relative to the same frequencies from the main speakers (i.e., at and around the crossover point to the subwoofer). A similar effect can be achieved with the delay control on many home theater receivers. The subwoofer phase control found on many subwoofer amplifiers is actually a polarity inversion switch.[60] It allows users to reverse the polarity of the subwoofer relative to the audio signal it is being given. This type of control allows the subwoofer to either be in phase with the source signal, or 180 degrees out of phase.

The subwoofer phase can still be changed by moving the subwoofer closer to or further from the listening position, however this may not be always practical.

Servo subwoofers[edit]

Some active subwoofers use a servo feedback mechanism based on cone movement that modifies the signal sent to the voice coil. The servo feedback signal is derived from a comparison of the input signal to the amplifier versus the actual motion of the cone. The usual source of the feedback signal is a few turns of voice coil attached to the cone or a microchip-based accelerometer placed on the cone itself.[61][62] An advantage of a well-implemented servo subwoofer design is reduced distortion making smaller enclosure sizes possible.[63] The primary disadvantages are cost and complexity.[64]

Servo-controlled subwoofers are not the same as Tom Danley's ServoDrive subwoofers, whose primary mechanism of sound reproduction avoids the normal voice coil and magnet combination in favor of a high-speed belt-driven servomotor. The ServoDrive design increases output power, reduces harmonic distortion and virtually eliminates power compression, the loss of loudspeaker output that results from an increase in voice coil impedance due to overheating of the voice coil. This feature allows high-power operation for extended periods of time.[65][66][67] Intersonics was nominated for a TEC Award for its ServoDrive Loudspeaker (SDL) design in 1986 and for the Bass Tech 7 model in 1990.[68][69]


Home audio[edit]

Basic sealed subwoofer in a residential setting.

The use of a subwoofer augments the bass capability of the main speakers, and allows them to be smaller without sacrificing low-frequency capability. A subwoofer does not necessarily provide superior bass performance in comparison to large conventional loudspeakers on ordinary music recordings due to the typical lack of very low frequency content on such sources. However, there are recordings with substantial low-frequency content that most conventional loudspeakers are ill-equipped to handle without the help of a subwoofer, especially at high playback levels, such as music for pipe organs with 32' (9.75 meter) bass pipes (16 Hz), very large bass drums on symphony orchestra recordings and electronic music with extremely low synth bass parts, such as bass tests or bass songs.

Frequencies which are sufficiently low are not easily localized by humans, hence many stereo and multichannel audio systems feature only one subwoofer channel and a single subwoofer can be placed off-center without affecting the perceived sound stage, since the sound that it produces will be difficult to localize. The intention in a system with a subwoofer is often to use small main speakers (of which there are two for stereo and five or more for surround sound or movie tracks) and to hide the subwoofer elsewhere (e.g. behind furniture or under a table), or to augment an existing speaker to save it from having to handle woofer-destroying low frequencies at high levels. This effect is possible only if the subwoofer is restricted to quite low frequencies, usually taken to be, say, 100 Hz and below—still less localization is possible if restricted to even lower maximum frequencies. Higher upper limits for the subwoofer (e.g., 125 Hz) are much more easily localized, making a single subwoofer impractical. Home theatre systems typically use one subwoofer cabinet (the "1" in 5.1 surround sound). However, to "improve bass distribution in a room that has multiple seating locations, and prevent "node" or "null points" with weakened bass response, some home cinema enthusiasts use "5.2" or "7.2" surround sound systems with two subwoofer cabinets in the same room.[70]

Some users add a subwoofer because high levels of low-frequency bass are desired, even beyond what is in the original recording, as in the case of house music enthusiasts. Thus, subwoofers may be part of a package that includes satellite speakers, may be purchased separately, or may be built into the same cabinet as a conventional speaker system. For instance, some floor-standing tower speakers include a subwoofer driver in the lower portion of the same cabinet. Physical separation of subwoofer and "satellite" speakers not only allows placement in an inconspicuous location, but since sub-bass frequencies are particularly sensitive to room location (due to room resonances and reverberation 'modes'), the best position for the subwoofer is not likely to be where the "satellite" speakers are located.

For greatest efficiency and best coupling to the room's air volume, subwoofers can be placed in a corner of the room, far from large room openings, and closer to the listener. This is possible since low bass frequencies have a long wavelength; hence there is little difference between the information reaching a listener's left and right ears, and so they cannot be readily localized. All low-frequency information is sent to the subwoofer. However, unless the sound tracks have been carefully mixed for a single subwoofer channel, it is possible to have some cancellation of low frequencies if bass information in one channel's speaker is out of phase with another.

The physically separate subwoofer/satellite arrangement, with small satellite speakers and a large subwoofer cabinet that can be hidden behind furniture, has been popularized by multimedia speaker systems such as Bose Acoustimass Home Entertainment Systems, Polk Audio RM2008 Series and Klipsch Audio Technologies ProMedia, among many others.[71][72] Low-cost "home theater in a box" systems advertise their integration and simplicity.

A small subwoofer cabinet designed for use with a home computer.

Particularly among lower cost "Home Theater in a Box" systems and with "boom boxes", however, the inclusion of a subwoofer may be little more than a marketing technique. It is unlikely that a small woofer in an inexpensively-built compact plastic cabinet will have better bass performance than well-designed conventional (and typically larger) speakers in a plywood or MDF cabinet. Mere use of the term "subwoofer" is no guarantee of good or extended bass performance. Many multimedia "subwoofers" might better be termed "mid bass cabinets" (60 Hz to 160 Hz), as they are too small to produce deep bass in the 30 Hz to 59 Hz range.[73]

Further, poorly-designed systems often leave everything below about 120 Hz (or even higher) to the subwoofer, meaning that the subwoofer handles frequencies which the ear can use for sound source localization, thus introducing an undesirable subwoofer "localization effect". This is usually due to poor crossover designs or choices (too high a crossover point or insufficient crossover slope) used in many computer and home theater systems; localization also comes from port noise[74] and from typically large amounts of harmonic distortion in the subwoofer design.[75] Home subwoofers sold individually usually include crossover circuitry to assist with the integration of the subwoofer into an existing system.

Car audio[edit]

Multiple subwoofers in a hatchback car.

Automobiles are not well suited for the "hidden" subwoofer approach due to space limitations in the passenger compartments. It is not possible, in most circumstances, to fit such large drivers and enclosures into doors or dashboards, so subwoofers are installed in the trunk or back seat space. Some car audio enthusiasts compete to produce very high sound pressure levels in the confines of their vehicle's cabin; sometimes dangerously high sound pressure levels. The "SPL wars" have drawn much attention to subwoofers in general, but subjective competitions in sound quality ("SQ") have not gained equivalent popularity. Top SPL cars are not able to play normal music, or perhaps even to drive normally as they are designed solely for competition. Many non-competition subwoofers are also capable of generating high levels in cars due to the small volume of a typical car interior. High sound levels can cause hearing loss and tinnitus if one is exposed to them for an extended period of time.[76]

In the 2000s, several car audio manufacturers produced subwoofers using non-circular shapes, including Boston Acoustic, Kicker, Sony, Bazooka, and X-Tant. Other major car audio manufacturers like Rockford Fosgate did not follow suit since non-circular subwoofer shapes typically carry some sort of distortion penalties.[77][78][79] In situations of limited mounting space they provide a greater cone area and assuming all other variables are constant, greater maximum output. An important factor in the "square sub vs round sub" argument is the effects of the enclosure used. In a sealed enclosure, the maximum displacement is determined by


  • Vd is the volume of displacement (in m3)
  • xmax is the amount of linear excursion the speaker is mechanically capable of (in m)
  • Sd is the cone area of the subwoofer (in m2).

These are some of the Thiele/Small parameters which can either be measured or found with the driver specifications.

Cinema sound[edit]

After the introduction of Sensurround, movie theater owners began installing permanent subwoofer systems. Dolby Stereo 70 mm Six Track was a six-channel film sound format introduced in 1976 that used two subwoofer channels for stereo reproduction of low frequencies. In 1981, Altec introduced a dedicated cinema subwoofer model tuned to around 20 Hz: the 8182. Starting in 1983, THX certification of the cinema sound experience quantified the parameters of good audio for watching films, including requirements for subwoofer performance levels and enough isolation from outside sounds so that noise did not interfere with the listening experience.[80] This helped provide guidelines for multiplex cinema owners who wanted to isolate each individual cinema from its neighbors, even as louder subwoofers were making isolation more difficult. Specific cinema subwoofer models appeared from JBL, Electro-Voice, Eastern Acoustic Works, Kintek, Meyer Sound Laboratories and BGW Systems in the early 1990s. In 1992, Dolby Digital's six-channel film sound format incorporated a single LFE channel, the "point one" in 5.1 surround sound systems.

Tom Horral, a Boston-based acoustician, blames complaints about modern movies being too loud on subwoofers. He says that before subwoofers made it possible to have loud, relatively undistorted bass, movie sound levels were limited by the distortion in less capable systems at low frequency and high levels.[81]

Sound reinforcement[edit]

Each stack of speakers in this sound reinforcement setup consists of two EAW SB1000 slanted baffle subwoofers (each contains two 18-inch drivers) and two EAW KF850 full range cabinets for the mid and high frequencies.

Professional audio subwoofers used in rock concerts in stadiums, DJ performances at dance music venues (e.g., electronic dance music) and similar events must be capable of very high bass output levels, at very low frequencies, with low distortion. This is reflected in the design attention given in the 2010s to the subwoofer applications for sound reinforcement, public address systems, dance club systems and concert systems. Cerwin Vega states that when a subwoofer cabinet is added to an existing full-range speaker system, this is advantageous, as it moves the "...lowest frequencies from your main [full-range] PA speakers" thus "...eliminat[ing] a large amount of the excess work that your main top [full-range] box was trying to reproduce. As a result, your main [full-range] cabinets will run more efficiently and at higher volumes."[82] A different argument for adding subwoofer cabinets is that they may increase the "level of clarity" and "perceived loudness" of an overall PA system, even if the SPL is not actually increased.[83]Sound on Sound states that adding a subwoofer enclosure to a full-range system will reduce "cone excursion", thus lowering distortion, leading to an overall cleaner sound.[84]

Consumer applications (as in home use) are considerably less demanding due to much smaller listening space and lower playback levels. Subwoofers are now almost universal in professional sound applications such as live concert sound, churches, nightclubs, and theme parks. Movie theatres certified to the THX standard for playback always include high-capability subwoofers. Some professional applications require subwoofers designed for very high sound levels, using multiple 12-, 15-, 18- or 21-inch drivers (30 cm, 40 cm, 45 cm, 53 cm respectively). Drivers as small as 10-inch (25 cm) are occasionally used, generally in horn-loaded enclosures.

The number of subwoofer enclosures used in a concert depends on a number of factors, including the size of the venue, whether it is indoors or outdoors, the amount of low-frequency content in the band's sound, the desired volume of the concert, and the design and construction of the enclosures (e.g., direct-radiating versus horn-loaded). A tiny coffeehouse may only need a single 10-inch subwoofer cabinet to augment the bass provided by the full-range speakers. A small bar may use one or two direct-radiating 15-inch (40 cm) subwoofer cabinets. A large dance club may have a row of four or five twin 18-inch (45 cm) subwoofer cabinets, or more. In the largest stadium venues, there may be a very large number of subwoofer enclosures. For example, the 2009–2010 U2 360° Tour used 24 Clair Brothers BT-218 subwoofers (a double 18-inch (45 cm) box) around the perimeter of the central circular stage, and 72 proprietary Clair Brothers cardioid S4 subwoofers placed underneath the ring-shaped "B" stage which encircles the central main stage.[85][86]

A row of subwoofer cabinets in front of the stage of a rock concert. One enclosure out of every stack of three is turned backward to make a cardioid output pattern.
Источник: []

Download driver m-58 party sound

3 thoughts to “Download driver m-58 party sound”

Leave a Reply

Your email address will not be published. Required fields are marked *